Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves

نویسندگان

  • Wei Huang
  • Ying-Jie Yang
  • Hong Hu
  • Shi-Bao Zhang
چکیده

In higher plants, the generation of proton gradient across the thylakoid membrane (ΔpH) through cyclic electron flow (CEF) has mainly two functions: (1) to generate ATP and balance the ATP/NADPH energy budget, and (2) to protect photosystems I and II against photoinhibition. The intensity of light under which plants are grown alters both CEF activity and the ATP/NADPH demand for primary metabolic processes. However, it is unclear how the role of CEF is affected by the level of irradiance that is applied during the growth and measurement periods. We studied the role of CEF at different light intensities in leaves from sun- and shade-grown plants. At 849 μmol photons m(-2) s(-1), both types of leaves had nearly the same degree of CEF activation. Modeling of the ATP/NADPH demand revealed that, at this light intensity, the contribution of CEF toward supplying ATP was much higher in the sun leaves. Meanwhile, the shade leaves showed higher levels of non-photochemical quenching and the P700 oxidation ratio. Therefore, at 849 μmol photons m(-2) s(-1), CEF mainly helped in the synthesis of ATP in the sun leaves, but functioned in photoprotection for the shade leaves. When the light intensity increased to 1976 μmol photons m(-2) s(-1), CEF activation was greatly enhanced in the sun leaves, but its contribution to supplying ATP changed slightly. These results indicate that the main role of CEF is altered flexibly in response to light intensity. In particular, CEF mainly contributes to balancing the ATP/NADPH energy budget under sub-saturating light intensities. When exposed to saturating light intensities, CEF mainly protects photosynthetic apparatus against photoinhibition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic electron flow around photosystem I in C(3) plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex.

Cyclic electron flow around photosystem (PS) I has been widely described in vitro in chloroplasts or thylakoids isolated from C(3) plant leaves, but its occurrence in vivo is still a matter of debate. Photoacoustic spectroscopy and kinetic spectrophotometry were used to analyze cyclic PS I activity in tobacco (Nicotiana tabacum cv Petit Havana) leaf discs illuminated with far-red light. Only a ...

متن کامل

DeltapH-dependent photosystem II fluorescence quenching induced by saturating, multiturnover pulses in red algae

We have previously shown that in the red alga Rhodella violacea, exposure to continuous low intensities of light 2 (green light) or near-saturating intensities of white light induces a DeltapH-dependent PSII fluorescence quenching. In this article we further characterize this fluorescence quenching by using white, saturating, multiturnover pulses. Even though the pulses are necessary to induce ...

متن کامل

The plastome-encoded PsaJ subunit is required for efficient Photosystem I excitation, but not for plastocyanin oxidation in tobacco.

The functions of several small subunits of the large photosynthetic multiprotein complex PSI (Photosystem I) are not yet understood. To elucidate the function of the small plastome-encoded PsaJ subunit, we have produced knockout mutants by chloroplast transformation in tobacco (Nicotiana tabacum). PsaJ binds two chlorophyll-a molecules and is localized at the periphery of PSI, close to both the...

متن کامل

Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow.

Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least pa...

متن کامل

Cyclic Electron Flow Around Photosystem II as Examined by Photosynthetic Oxygen Evolution Induced by Short Light Flashes

W. I. Gruszecki3 K. Strzałkab, A. Radunzc and G. H. Schmidc a Department o f Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland h Department o f Plant Physiology and Biochemistry, Jan Zurzycki Institute of Molecular Biology, Jagiellonian University, 31-120 Krakow, Poland c Fakultät für Biologie, Lehrstuhl Zellphysiologie, Universität Bielefeld. Postfach 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015